报告题目:Weak Galerkin finite element method for elasticity problems
报告人:霍富昌 香港理工大学应用数学系
报告时间:2025年11月30日 下午15:20-16:00
报告地点:#腾讯会议:304601182
校内联系人:张剑桥 [email protected]
报告摘要:
In this work, we present recent advances in the weak Galerkin (WG) finite element methods for linear elasticity and elastodynamics. By incorporating an appropriate H(div)-conforming displacement reconstruction operator, we develop arbitrary-order WG schemes that achieve optimal convergence in the H1- and L2-norms and remain uniformly independent of the Lamé parameter, thereby ensuring locking-free performance. For elastodynamics problems, both semi-discrete and fully discrete WG formulations are established and analyzed, with stability and optimal error estimates derived without recourse to Gronwall's inequality. Furthermore, a reconstructed WG framework is introduced, enabling high-order accuracy with only one degree of freedom per element over general polygonal and polyhedral meshes. Numerical experiments confirm the accuracy, robustness, and computational efficiency of the proposed methods.
报告人简介:霍富昌, 2025年于吉林大学获得博士学位,目前为香港理工大学应用数学系博士后,主要研究方向为非标准有限元方法及其在固体力学中的应用。